Microturbulent Transport of Non-maxwellian Alpha Particles

نویسندگان

  • George John Wilkie
  • William Dorland
  • Thomas Antonsen
  • Adil Hassam
چکیده

Title of dissertation: MICROTURBULENT TRANSPORT OF NON-MAXWELLIAN ALPHA PARTICLES George John Wilkie, Doctor of Philosophy, 2015 Dissertation directed by: Professor William Dorland Department of Physics A burning Deuterium-Tritium plasma is one which depends upon fusion-produced alpha particles for self-heating. Whether a plasma can reach a burning state requires knowledge of the transport of alpha particles, and turbulence is one such source of transport. The alpha particle distribution in collisional equilibrium forms a non-Maxwellian tail which spans orders of magnitude in energy, and it is this tail that is responsible for heating the plasma. Newly-born high-energy alpha particles are not expected to respond to turbulence as strongly as alpha particles that have slowed down to the bulk plasma temperature. This dissertation presents a lowcollisionality derivation of gyrokinetics relevant for alpha particles and describes the upgrades made to the GS2 flux-tube code to handle general non-Maxwellian energy distributions. With the ability to run self-consistent simulations with a population of alpha particles, we can examine certain assumptions commonly made about alpha particles in the context of microturbulence. It is found that microturbulence can compete with collisional slowing-down, altering the distribution further. One assumption that holds well in electrostatic turbulence is the trace approximation, which is built upon to develop a model for efficiently calculating the coupled radialenergy turbulent transport of a non-Maxwellian species. A new code was written for this purpose and corrections to the global alpha particle heating profile due to microturbulence in an ITER-like scenario are presented along with sensitivity studies. MICROTURBULENT TRANSPORT OF NON-MAXWELLIAN ALPHA PARTICLES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the approximations of the distribution function of fusion alpha particles

The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “...

متن کامل

Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)

In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...

متن کامل

Interaction between fast particles and turbulence

A systematic study of high energetic alpha particle interaction with microinstability driven turbulence (ITG) is presented. The alpha particles are considered to be passive, thus not modifying the fine structure of the turbulence, and modelled as Maxwellian distributed. Both the turbulent fields and the evolution of the alpha distribution are computed by means of an Eulerian, flux tube code. It...

متن کامل

Why the Maxwellian Distribution is the Attractive Fixed Point of the Boltzmann Equation

We know that the velocity distribution of a gas of classical particles in equilibrium is the Maxwellian distribution. This is a very well experimentally confirmed fact. The approach in kinetic theory that gives the time evolution of the velocity distribution of a gas of particles is the Boltzmann equation. Hence, the Boltzmann equation should have the Maxwellian distribution as an attractive fi...

متن کامل

The dissipative linear Boltzmann equation

We introduce and discuss a linear Boltzmann equation describing dissipative interactions of a gas of test particles with a fixed background. For a pseudo-Maxwellian collision kernel, it is shown that, if the initial distribution has finite temperature, the solution converges exponentially for large–time to a Maxwellian profile drifting at the same velocity as field particles and with a universa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015